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Abstract  

Identifying and characterizing variations of human activity ï specifically changes 

in intensity and similarity ï in urban environments provide insights into the social 

component of those eminently complex systems. Using large volumes of user-

generated mobile phone data, we derive mobile communication profiles that we use 

as a proxy for the collective human activity. In this paper, geocomputational methods 

and geovisual analytics such as Self-Organizing Maps SOM are used to explore the 

variations of these profiles, and its implications for collective human activity. We 

evaluate the merits of SOM as a cross-dimensional clustering technique and derived 

temporal trajectories of variations within the mobile communication profiles. The 

trajectoriesô characteristics such as length are discussed, suggesting spatial 

variations in intensity and similarity in collective human activity. Trajectories are 

linked back to the geographic space to map the spatial and temporal variation of 

trajectory characteristics. Different trajectory lengths suggest that mobile phone 

activity is correlated with the spatial configuration of the city, and so at different times 

of the day. Our approach contributes to the understanding of the space-time social 

dynamics within urban environments. 



 

 

1. Introduc tion  

The increasing proliferation of a broad array of geographically referenced data 

derived from Global Positioning System (GPS) receivers, location-based services, or 

georeferenced user-generated data enables new opportunities in the analysis of 

human spatial behavior (Kwan, 2000). These emerging datasets offer the potential to 

extract collective human behavior patterns, enabling insights onto the social 

component of urban dynamics. User-generated mobile network traffic data is one 

such data source that may serve as a proxy to characterize societyôs behavior.(Ratti 

et al., 2006; Shoval, 2007; Sevtsuk and Ratti, 2010; Calabrese et al., 2011a; Sagl et 

al., 2012c; Yuan and Raubal, 2012). 

The overall motivation of this research is to explore spatial and temporal 

variations in intensity and similarity of collective human activity at different times of 

the day and days of the week, thereby enabling an enhanced understanding of 

human behavior in the context of the cityôs spatial configuration. Such an enhanced 

understanding may be particularly useful to urban planners in facilitating sustainable 

decision making. First, information on daily human routines can inform public 

authorities for a more efficient allocation of rescue services in anticipation of 

increased interventions, distinguishing between critical and non-critical places. 

Second, urban planners may find supporting evidence that the planned (legal) zoning 

of an area coincide with its actual use, thereby reconsidering planning sustainability. 

We hypothesize that such variations in intensity and similarity of collective human 

activity can be revealed from mobile phone data. 

Recent research employing mobile network data has sought to understand the 

temporal dynamics of these data across an urban landscape. In this regard, prior 



 

 

work has mapped the intensity of network data at various time increments producing 

map sequences to explore dynamics (Ratti et al., 2006; Pulselli et al., 2008). Sevtsuk 

and Ratti (2010) utilized network intensity values assigned to a geographic cell in a 

regression modeling framework. A series of dummy variables portraying hourly, daily, 

and weekly increments served as independent variables to test whether the time of 

day, day of the week, or week in the year could explain intensity and thus confirm the 

existence of a óroutineô in urban mobility. Andrienko et al. (2010a) and Sagl et al. 

(2012b) present visual analytic approaches to exploring temporal changes in urban 

mobile network data. Both studies demonstrate the effectiveness and the efficiency 

of such approaches in real-world analytic scenarios for providing complementary 

views on the temporal sequence of spatial conditions and, moreover, on the spatial 

distribution of local temporal variations. In this research, we build upon these initial 

visualization techniques and propose another method for depicting spatio-temporal 

trajectories of changes in mobile phone uses across an urban area. The visualization 

technique we employ further enables spatial statistical analyses to be performed on 

the output which aids in identifying óoutliersô or unanticipated patterns. 

Specifically, this current paper advances existing research in investigating the 

rhythms of social urban systems by elaborating on spatio-temporal variations within 

collective human activity patterns based on mobile phone data. We propose 

innovative combinations of visualization and exploratory space-time analysis 

methods. Firstly, we use the Self-Organizing Map (SOM) as the underlying 

framework for the development of temporal trajectories of change in multi-

dimensional mobile phone data across an urban area; a methodology first proposed 

by (Skupin and Hagelman, 2005) in the context of census data change. We expand 

upon this visualization technique by proposing subsequent analyses on the 



 

 

properties of the trajectories (e.g., length). Finally, trajectories are linked to the 

geographic space to identify clusters of similarity along with outlier trajectories 

through the use of local spatial autocorrelation statistics. 

The paper is structured as follows. In Section 2, we provide a concise overview 

on the rationale of user-generated data and analysis methods in the context of urban 

social dynamics. In section 3, we introduce the data set used and the methodology 

developed for mapping collective human activity based on mobile phone data. 

Section 4 illustrates the results of the case study performed, which is followed by a 

discussion in section 5. We draw some conclusions in section 6 and provide insights 

for future research. 

2. User-Generated Data in Urban Social Dynamics Analysis 

Hägerstrandôs (1970) seminal work on time geography stressed the importance of 

examining individual spatio-temporal movements and constraints in our 

understanding of urban and regional systems. The collective result of these space-

time paths throughout a metropolitan region gives rise to the functional structure of 

the city. From a computational perspective, investigating these daily, spatio-temporal 

patterns of human mobility has been a challenge for decades. For instance, in 1984, 

Goodchild and Janelle collected 1500 individual travel diaries to characterize diurnal 

variations in the collective human behavior within urban social structures. In contrast 

to the 1980s, todayôs user-generated data include mobile phone data and data and 

information from social media such as Twitter, Instagram, or Facebook, which has 

provided a plethora of human generated data. That is, individuals leave behind ï 

voluntarily or not ï a number of traces when interacting with digital systems such as 

mobile communication networks. 



 

 

Such digital traces can reflect individual as well as collective human behavior at 

various levels of spatial and temporal granularities. We distinguish between 

volunteered and in-volunteered user-generated data and information provided by 

individuals. In the former type the user explicitly agree and are fully aware of 

generating data and information, for instance when posting georeferenced pictures 

with some description on Instagram (a social media platform). This type of user-

generated data and information is known as Volunteered Geographic Information 

(VGI) as coined by Goodchild (2007). However, VGI is generated by rather specific 

subgroups, increasingly via mobile devices (Perreault and Ruths, 2011). In contrast 

to VGI, the user-generated traffic in mobile phone networks is ï from a userôs 

perspective ï typically provided involuntary and lacking in content: e.g. the number of 

text messages sent/received is known but not the text itself, or the number and 

duration of calls is known but not the topic of the talk itself. 

Further reasons for our emphasis on user-generated mobile network traffic are, 

firstly, that this type of in-volunteered data provide a large and relatively unbiased 

sample across society (Shoval, 2007; Rubio et al., 2010). Secondly, when a mobile 

device is connected to the internet via the mobile phone network, the traffic 

generated due to posting VGI on social media represents an additional indicator 

since this user-generated traffic is an intrinsic part of the overall mobile phone 

network traffic. Thus, user-generated data from mobile phone networks has shaped 

the way we investigate spatio-temporal human behavior patterns ï this is 

documented in a large body of scientific literature (Ratti et al., 2006; Krygsman et al., 

2007; Onnela et al., 2007; Shoval, 2007; Candia et al., 2008; González et al., 2008; 

Reades et al., 2009; Noulas et al., 2012; Sagl et al., 2012c). 



 

 

Urban environments are of particular interest due to the typically higher degree 

and complexity of social dynamics. Research on such dynamics on the basis of 

mobile phone data has been intensively conducted by the MITôs SENSEable City 

Lab1 and partner institutions (Krings et al., 2009; Quercia, 2010; Calabrese et al., 

2011a; Calabrese et al., 2011b; Di Lorenzo and Calabrese, 2011; Calabrese et al., 

2013). Such data driven studies explore diverse characteristics of urban 

environments ï from general urban activity patterns (Ratti et al., 2006; Sagl et al., 

2012c) to individual mobility preferences (Calabrese et al., 2013) or characteristics of 

group behavior (Farrahi and Gatica-Perez, 2011). However, the variations in space 

and time within typical collective human activity patterns in urban spaces need more 

attention in order to provide insights into the dynamic of change. 

Other individual data have been used to investigate the cycles and routine of 

everyday life. For instance, data from Bluetooth-enabled mobile phones in 

combination with cell tower locations (Eagle and Pentland, 2009), or Wi-Fi access 

points, Foursquare (a location-based social network) check-ins, Radio Frequency 

Identification (RFID) cards for public transport (Williams et al., 2012). Within the 

óUrbanDiaryô project, the GPS tracks of twenty individuals were compared with their 

statements made on how they experienced the city of London, UK (Neuhaus, 2010; 

Neuhaus, 2011). The results show that daily, weekly and monthly space-time 

patterns are influenced by the configuration of the urban environment, i.e. by the 

functional arrangement of the city. 

                                            
1
 http://senseable.mit.edu/ (accessed on 2013/05/03) 

http://senseable.mit.edu/


 

 

3. Data and Methodology 

3.1 Data 

To explore variations in collective human activity we conduct a case study using 

user-generated mobile phone data for the city of Udine, a medium-size city located in 

Northern Italy (Figure 1). The overall mobile penetration rate, i.e., the ratio between 

subscribers of mobile networks and the population, in this region is 155%, or in other 

words, 155 subscribers per 100 people. The network operator that provided the data 

sample used in this paper has a market share of 34.2%. That is, every third 

subscriber of a mobile network in that region is registered by the mobile network 

operator that provided the data. Thus, the mobile network traffic data sample reflects 

a relatively high proportion of the mobile communication activity of the entire 

population. 



 

 

 

Figure 1: City of Udine (Northern Italy); the grid size represents the spatial resolution (250m x 250m) 
of the mobile network traffic dataset used (the cells in the regular grid do not relate to the network 
antennasô service areas.) 

The user-generated mobile phone data set used fully covers the case study area; 

the time period of interest is from July 20th to September 30th 2009 due to the data 

have been validated to be consistent. From that data set, we selected five attributes 

as proxies for different human activity (Table 1). As provided by the network operator, 

each of the attributes is spatially aggregated to the corresponding 250m x 250m grid 

cell (refer to Figure 1) and temporally aggregated to a 15-minutes time interval. No 

identifier that might somehow relate to individual mobile phone activity was provided. 

The data set used is fully anonymized and does not violate any privacy aspects. 

Table 1: Attribute Matrix of the User-Generated Mobile Phone Data Set used 



 

 

 Incoming Outgoing 

Voice Calls 

number of calls terminated 

in a given grid cell but 

originating from another, 

adjacent cell 

number of calls originating 

from a given grid cell but 

terminated in another, 

adjacent cell 

Text 

Messages 

SMS 

number of text messages 

terminated in a given grid 

cell but originating from 

another, adjacent cell 

number of calls originating 

from a given grid cell but 

terminated in another, 

adjacent cell 

Total Traffic 

The total network traffic is measured in Erlang2 and 

implicitly contains certain types of VGI and is therefore 

used as a proxy for the overall collective mobile 

communication activity; the total traffic refers to a given 

single cell 

Figure 2 illustrates the space-time variation in the five variables of mobile phone 

usage ï i.e., SMS in/out, voice calls in/out, and total internet traffic ï in a space-time 

cube framework, following Andrienko et al. (2010a), and using the visualization 

package Voxler: the X and Y-axis denote the geographic space, while the Z-axis is 

the temporal axis. Volume rendering reflects the strength of mobile phone usage. 

Clusters of strong mobile phone usage are further reinforced using isovolumes. The 

five different variables tend to exhibit similar patterns: a larger cluster of cells in the 

center of town is particularly active around noon and after 6pm again. The second 

temporal cluster is more elongated for SMSs than phone calls, probably owing to the 

fact that several public companies or office close their business at night. 

                                            
2
óErlangô is a dimensionless unit that refers to the ratio of number of persons to duration of calls: 1 

Erlang = 1 person calling for 1 hour = 2 persons calling for 30 minutes each = three persons calling for 
20 minutes each and so on. 



 

 

 

Figure 2: 3D visualization of mobile phone activity (categorized by received SMS, in a); outgoing SMS, 
in b); received phone call, in c); placed phone call, in d) and overall internet traffic in e). The shaded 
envelope denotes 99% of the activity, the triangulated envelope 95%. Voxels are red-colored to 
reinforce the overall intensity 



 

 

Following Sevtsuk and Ratti (2010) and Sagl et al. (2012a), we further 

distinguished weekdays (Monday-Friday) from weekends (Saturday and Sunday) to 

take into account the two most evident differences in weekly mobile communication 

pattern. To strike a balance between temporal granularity and temporal 

representativeness, we aggregated the 15 minutes intervals to 1 hour intervals. As a 

result, for each grid cell (n=440), we obtain two groups of typical temporal signatures, 

one for typical weekdays, another one for typical weekend. This data preparation 

resulted in a data hyper-cube containing a total number of 440 (cells) x 2 

(weekday/weekend) x 5 (number of attributes) x 24 (hours of the day) = 105,600 data 

values that represent the average mobile phone communication profiles and serve as 

input for further analysis. 

3.2 Methodology 

Geovisual analytics provides a suite of techniques that can be used in support 

explorative spatial data analysis (Andrienko et al., 2010a; Andrienko et al., 2010b). 

Geovisual analytics is thus particularly suitable for investigating user-generated 

mobile phone data in space and time (Andrienko et al., 2010c; Keim et al., 2010; 

Kohlhammer et al., 2011). As illustrated in Figure 3, Geovisual Analytics is used in all 

phases of the analysis approach ï from raw mobile phone data exploration to the 

extraction of spatio-temporal information on variations of collective human activity. 

Figure 3 provides an overview of the methodology used for exploring mobile phone 

data, comprising three subsequent phases: first, computation of the mobile 

communication profiles derived from user-generated mobile phone data; second, 

generation of temporal trajectories reflecting changes in intensity and similarity within 

those profiles based on SOM; third, assessment of geospatial dimensions of these 

trajectories using LISA. 



 

 

In order to construct temporal trajectories of variations in mobile phone usage 

according to the five attributes described in Table 1, we employ a visualization 

technique based upon the computational procedure of the Self-Organizing Map 

(SOM) (Kohonen, 1990). In essence, a SOM is a data clustering and projection 

procedure that takes input data of multiple dimensions and arranges it on an output 

space of a lower dimension (most often 2) so that observations that are most similar 

to one another across the initial variables are located in close proximity to one 

another on the output space (Skupin and Agarwal, 2008). The inherently visual 

output of this procedure makes it an ideal starting point for exploring temporal 

variations across multiple attribute dimensions (Delmelle et al., 2013). 

 

Figure 3: Overview of the Methodology: from raw mobile phone data (left) to spatio-temporal 
information on collective human activity (right) 

A SOM consists of a set of input and output nodes arranged on an output space 

(see Figure 4 for an example of a 2-dimensional output space). The number of nodes 

is user defined and largely contingent upon the intended purpose of the SOM 

procedure: a small number of nodes make the algorithm more akin to a clustering 

procedure while a large number of nodes, more than the number of input 

observations, enable emergent structures in the data to be visualized. In this case, 

the objective is not to serve as a clustering technique per se, but to construct 

trajectories of attribute change atop this space. A variety of output space sizes were 

initially tested; our goal was to provide enough space to visualize changes across the 



 

 

spectrum of attribute values. A 2,992 node rectangular grid was finally decided upon 

(for an input dataset of 105,600 records); for our dataset, increasing the number of 

nodes continued to produce identical trajectory patterns. Each node contains an n 

dimensional vector of attributes where n is the dimensionality of the input space (in 

this case five). The SOM training procedure is an iterative process where at each 

step, a random input vector, x, is presented to the output space where nodes 

compete for x based on Euclidean distance similarity between x and all other vectors. 

When the best matching node is identified, the values of its attributes are updated to 

reflect the placement of x on the grid. The end result of this process is an ordering of 

the output space so that neighboring nodes have similar values across the n 

dimensions. For more details on the SOM algorithm, readers are pointed to Skupin 

and Agarwal (2008). 

 

Figure 4: From multi-dimensional mobile communication profiles (sample input data) to temporal 
trajectories of change on the SOM output space 



 

 

In order to construct trajectories of change across this output space, each 

observation, in this case, geographic cell and corresponding mobile phone attributes, 

is entered into the SOM multiple times; once for each time stamp. The observationôs 

position on the output space is then traced for each temporal instance to establish a 

trajectory (Skupin and Hagelman, 2005; Delmelle et al., 2013). See Figure 4 for an 

illustration of the procedure. The movement of each trajectory therefore represents 

changes in the attribute space for a single geographic cell across the 24 hour time 

span; a greater distance between vertices implies a larger change in attribute values. 

Note that this approach differs from previous work employing SOM to classify and 

cluster movement trajectories (e.g.,Owens and Hunter, 2000) in that in our case, the 

geographic location does not change over time, but the attribute values of the mobile 

communication profile associated to a geographic location. 

4. Results 

4.1 Temporal Trajectories on Self-Organizing Maps 

A temporal trajectory describes the typical daily spatio-temporal ómovementô of a 

given geographic grid cell within the SOM output space (not in the geographic 

space), thereby reflecting the degree of similarity among the five input variables of 

the mobile communication profiles (refer to Figure 4). We investigate the temporal 

dynamics of these mobile communication profiles using three distinct properties of 

the SOM trajectories as illustrated in Figure 5: 

¶ Length: the length of the trajectory is used as an indicator of variation 

reflecting the changes within and among the five input attributes. We suggest 

that longer trajectories denote higher variability in the underlying 

communication profile, in turn reflecting a livelier and more dynamic real-world 



 

 

human activity. In contrast, very short trajectories indicate limited changes in 

mobile communication behaviour. 

¶ Location and Extent: where is the trajectory is located within the SOM output 

space and how big its bounding box is indicate communication preferences, 

e.g. an overal predominance of voice over text communication. 

¶ Shape and Geometry: the geometrical behaviour of a trajectory (simple versus 

complex) reflects different levels of fluctuation within the communication 

profile. A zig-zaged shape indicate, in contrast to a ósmootherô shape, higher 

variations among such levels. 

 
Figure 5: Temporal trajectories on the SOM output space (regular point pattern): the location of nodes, 
which reflect similarity among the five variables, serve as vertices for the corresponding hour of the 
day (0-23); a, b and c show examples of trajectories with a similar length but different location/extent 
and shape/geometry, respectively. 



 

 

Trajectories with similar length but different location on the output space may 

indicate a similar underlying mobile communication patterns but at a different 

intensity level. In the remainder of the paper we focus on the ólengthô property. 

Three interesting common characteristics of the temporal trajectories can be 

identified from Figure 5. First, common overall patterns of movement in the two-

dimensional SOM output space, i.e. vertices of the trajectories in chronological order: 

starting point of each trajectory is at the top, movement down, movement up, ending 

point at the top again. Second, a óbig loopô, suggesting the daily circle of human 

activity in general. Third, a ósmall loop, which is interweaved in the big loop, reflecting 

the typical double-peak pattern around noon, indicating small variation at a high 

intensity level. This double-peak pattern is coherent with results from Sevtsuk and 

Ratti (2010) and Sagl et al. (2012c). 

 

Figure 6: Temporal trajectories in the SOM output space classified by their length on weekdays (top) 
and weekend (bottom); shortest trajectories in green on the left, longest in red on the right; the black 
ellipses denote visually outstanding trajectories within the same class (created with GeoTime 
Software). 

Figure 6 shows all 440 trajectories (one per geographic grid cell) on the SOM 

output space in a space-time cube over the course of a typical weekday (top) or a 




































