Characterization of a wavelength-tunable antenna-coupled infrared microbolometer

Michael A. Gritz, MEMBER SPIE
Raytheon
Space and Airborne Systems
Electronic Warfare Systems
6380 Hollister Ave
Goleta, California 93117
E-mail: Michael_A_Gritz@raytheon.com

Meredith Metzler
Cornell University
Cornell NanoScale Facility
Ithaca, New York 14853-5403

Mohamed Abdel-Rahman
Brian Monacelli, MEMBER SPIE
Guy Zummo
University of Central Florida
CREOL/School of Optics
Orlando, Florida 32816-2700

Donald Malocha
University of Central Florida
Department of Electrical and Computer Engineering
Orlando, Florida 32816-2362

Glenn D. Boreman, MEMBER SPIE
University of Central Florida
CREOL/School of Optics
Orlando, Florida 32816-2700

Abstract. Wavelength tuning is demonstrated in an antenna-coupled infrared microbolometer. With a 300-mV control voltage, we observed a tuning range of 0.5 μm near 10 μm. A metal-oxide-semiconductor capacitor underneath the antenna arms causes the shift of resonance wavelength with applied voltage. We develop a device model that agrees well with measured results. © 2005 SPIE. [DOI: 10.1117/1.1869892]

Subject terms: microbolometer; antenna-coupled detectors; wavelength-tunable detectors.

Paper 040235 received May 4, 2004; accepted for publication Sep. 7, 2004; published online Mar. 23, 2005.

1 Introduction

Conventional bolometers have long been used as thermal detectors for infrared (IR) radiation, using the change of resistance with an increase in the temperature. In the case of antenna-coupled microbolometers, incident IR-frequency current waves in the arms of the antenna, which are dissipated in the subwavelength-size bolometer. One of the main advantages of antenna coupling of IR sensors is that their polarization and wavelength responses can be electrically tuned by control of the current waves propagating on the antenna arms. In this paper we present the first demonstration of wavelength tuning in an antenna-coupled infrared microbolometer. The tuning mechanism is derived from a metal-oxide-semiconductor capacitor (MOS-C) underneath the arms of the antenna. Controlling the capacitance of this MOS-C by a small dc voltage modifies the electrical length of the antenna, thus tuning the free-space resonant wavelength.

2 Device Model

A cross section of the device along with its equivalent circuit is shown in Fig. 1, with full length of the antenna b = 1.7 μm, cross-arm width a = 0.385 μm, and distance from contact to feed point d = 0.95 μm. The thickness h of the sputtered SiO₂ insulator layer is 25 nm, and the substrate is 8000-Ω-cm p-type Si with N_A = 4 × 10¹¹ cm⁻³.

A transmission-line model was developed for the combined antenna and MOS-C. The MOS-C acts as a varactor (C_MOS), in series with the antenna capacitance C_a. Their equivalent capacitance C_EQ is in parallel with the antenna inductance L_a and the fringe-field capacitance C_f. The resonance frequency f_r for the antenna is given by

\[f_r = \frac{1}{2\pi\sqrt{L_a(C_{eq} + C_f)}} \] \hspace{1cm} (1)

where C_EQ is the series equivalent capacitance for the MOS-C and C_f, given by

\[C_{eq} = \frac{C_a C_{MOS}}{C_a + C_{MOS}} \] \hspace{1cm} (2)

A computer model was developed to model the capacitance-voltage characteristics for a p-type MOS-C using an exact charge distribution model inside the MOS-C. For the model a set of parameters must be introduced. The first parameter is the potential as a function of the depth x into the semiconductor, which is given by

\[U(x) = \frac{E_i(\text{bulk}) - E_i(x)}{kT} \] \hspace{1cm} (3)
where \(k \) is Boltzmann’s constant and \(T \) is the temperature. The surface potential in the semiconductor is then
\[
U_S = \frac{E_i(\text{bulk}) - E_i(\text{surface})}{kT}.
\]
(4)

The second parameter is the doping parameter, which is given by
\[
U_F = \frac{E_i(\text{bulk}) - E_F}{kT}.
\]
(5)

In addition to the potentials, a quantitative expression for the band bending inside the semiconductor is formulated using the intrinsic Debye length. The Debye length was originally introduced in the study of plasmas. Whenever a plasma is perturbed by placing a charge in it, the mobile species always rearrange so as to shield the plasma proper from the charge. The Debye length is the shielding distance. In the bulk, the semiconductor can be viewed as a plasma with an equal number of ionized impurity states and mobile electrons or holes. The placement of a charge near the semiconductor causes the mobile species inside the material to rearrange so as to shield the bulk semiconductor from the perturbing charge. The shielding distance is given by the bulk Debye length
\[
L_D = \left[\frac{\varepsilon_S \varepsilon_0 kT}{q^2 (n_{\text{bulk}} + p_{\text{bulk}})} \right]^{1/2},
\]
where \(\varepsilon_S \) and \(\varepsilon_0 \) are the dielectric constants in Si and free space, respectively, and \(q \) is the charge of an electron. The intrinsic Debye length \(L_D \) is found by setting \(n_{\text{bulk}} = p_{\text{bulk}} = n_i \), where \(n_i \) is the intrinsic semiconductor concentration:
\[
L_D = \left[\frac{\varepsilon_S \varepsilon_0 kT}{2q^2 n_i} \right]^{1/2}.
\]
(7)

The expressions for the charge density, electric field, and potential as a function of position inside the semiconductor are obtained by solving Poisson’s equation:
\[
\frac{d}{dx} \left(\frac{\rho}{\varepsilon_S \varepsilon_0} \right) = \frac{\rho}{\varepsilon_S \varepsilon_0} (\rho - n + N_D - N_A),
\]
(8)

where \(\rho \) is the conductivity; \(n \) and \(p \) are the equilibrium doping concentrations in the semiconductor, which are given by
\[
p = n_i \exp\left[\frac{(E_i(x) - E_F)/kT}{\varepsilon_S \varepsilon_0} \right],
\]
\[
n = n_i \exp\left[\frac{(E_F - E_i(x))/kT}{\varepsilon_S \varepsilon_0} \right],
\]
(9), (10)

and \(N_D \) and \(N_A \) are the nonequilibrium doping concentrations. Since the MOS-C is assumed to be a one-dimensional structure, Poisson’s equation simplifies to
\[
\xi = -\frac{kT}{q} \frac{dU}{dx}.
\]
(11)

Since both \(\rho \) and \(U \) are zero in the semiconductor bulk,
\[
N_D - N_A = n_i (e^{-U_F} - e^{U_F}).
\]
(12)

Substituting Eqs. (9)–(12) into Eq. (8) results in
\[
\rho = q n_i \left[\exp(U_F - U) - \exp(U - U_F) + e^{-U_F} - e^{U_F} \right],
\]
(13)

and

Fig. 1 IR MOS tuner: (a) cross section; (b) top view; (c) equivalent circuit.
\[
\frac{d^2U}{dx^2} = \frac{q^2n_i}{\varepsilon_S\varepsilon_0kT}[\exp(U-U_F) - \exp(U_F-U) + e^{U_F} - e^{-U_F}].
\]

By substituting Eq. (7) into Eq. (14) one obtains
\[
\frac{d^2U}{dx^2} = \frac{1}{2L_D^2}[\exp(U-U_F) - \exp(U_F-U) + e^{U_F} - e^{-U_F}].
\]

Poisson’s equation, which is given in Eq. (8), is solved subject to the boundary conditions given below:
\[
\xi = 0, \text{ or } \frac{dU}{dx} = 0, \text{ at } x = \infty
\]
and
\[
U = U_S \text{ at } x = 0.
\]
When both sides of Eq. (8) are multiplied by \(\frac{dU}{dx}\) and integrated from \(x = \infty\) to an arbitrary point \(x\), then using the boundary conditions one obtains
\[
\xi^2 = \left(\frac{kT/q}{L_D}\right)^2 [e^{U_F}(e^{-U} + U - 1) + e^{-U_F}(e^U - U - 1)].
\]

Equation (18) is of the form \(y^2 = a^2\), which has two roots, \(y = a\) and \(y = -a\). The energy-band diagram indicates that we must have \(\xi > 0\) when \(U > 0\) and \(\xi < 0\) when \(U < 0\). Since the right-hand side of the equation is always positive (\(a > 0\)), the proper polarity for the electric field is obtained by choosing the positive root when \(U > 0\) and the negative root when \(U < 0\). Therefore we can write
\[
\xi = \frac{\hat{U}_S - U}{kT/q} L_D
\]
where
\[
F(U_S, U_F) = [e^{U_F}(e^{-U} + U_S - 1) - e^{-U_F}(e^U - U_S - 1)]^{1/2}
\]
and
\[
\hat{U}_S = \begin{cases}
+1 & \text{ if } U_S > 0, \\
-1 & \text{ if } U_S < 0.
\end{cases}
\]
Now the capacitance can be found using
\[
C = \frac{C_o}{1 + \varepsilon_{SiO_2} W_{eff}/\varepsilon_S h},
\]
where \(C_o\) is the oxide capacitance and \(W_{eff}\) is the effective width of the depletion region and is given by
\[
W_{eff} = \begin{cases}
U_S L_D \left[\frac{2F(U_S, U_F)}{e^{U_F}(1 - e^{-U_S}) + e^{-U_F}(e^U - U - 1)}\right] & \text{(accumulation region)}, \\
\sqrt{2}L_D \frac{\sqrt{\varepsilon_S h}}{(e^{U_F} + e^{-U_F})^{1/2}} & \text{(flat band)}, \\
U_S L_D \left[\frac{2F(U_S, U_F)}{e^{U_F}(1 - e^{-U_S}) + e^{-U_F}(e^U - U - 1)}\right] & \text{(depletion region, inversion)}.
\end{cases}
\]

Since we are using an exact charge distribution model, the capacitance cannot be expressed as a function of the applied voltage. However, both variables are related to \(U_S\); therefore, the capacitance expected for a given applied voltage, including the metal-semiconductor work-function difference, can be found using
\[
V_G = \frac{kT}{q} \left[U_S + \hat{U}_S \frac{\varepsilon_S h}{\varepsilon_{SiO_2} L_D} F(U_S, U_F) \right] + \phi_{Au} - \ln \left[\frac{N_A}{n_i} \right] - \frac{E_g}{2}
\]
where \(\phi_{Au} = 0.7\) eV is the work function for gold, \(n_i = 1.5 \times 10^{10} \text{ cm}^{-3}\) is the intrinsic concentration of Si, and \(E_g = 1.1\) eV is the bandgap energy of Si.

Now we model the equivalent capacitance \(C_{Eq}\) as a function of voltage, using
\[
C_{Eq} = \frac{C_o}{1 + \varepsilon_{SiO_2} W_{eff}/\varepsilon_S h},
\]
This equation can be evaluated once we know \(C_o\) of the microstrip dipole antenna, which can be found using
\[
C_o = \frac{\varepsilon_r \varepsilon_o a b}{2 h} \cos^2 \left(\frac{\pi d}{b} \right)
\]
where the average relative permittivity \(\varepsilon_r\) of the substrate is calculated as...
The inductance L_a of the antenna can be calculated from Eq. (1) as

$$L_a = \frac{1}{\omega^2 C_{eq}}.$$

(28)

For calculation of the fringe-field capacitance C_f, we consider that the microstrip has electrical dimensions greater than its physical dimensions. For the antenna shown in Fig. 1, the fringing affects the cross-arm width a of the dipole. The difference is found as

$$\Delta a = 0.412 h \left(\epsilon_r + 0.3 \right) \left(a/h + 0.264 \right)$$

$$- 0.258 \left(a/h + 0.8 \right).$$

(29)

Now C_f can be found, using

$$C_f = \frac{0.01668 \epsilon_r}{\omega} \left(\frac{\Delta a}{h} \right) \left(\frac{a}{\lambda_r} \right),$$

(30)

where $\lambda_r = 10.45 \mu m$ is the initial measured resonant wavelength.

Using Eq. (1), with results from Eqs. (25), (26), (28), and (30), allows us to find the free-space resonant wavelength ($\lambda = c/f$) of the IR MOS tuner as a function of applied voltage V_G. The results of this model are shown in Fig. 2, along with measured values. When the device was biased beyond 150 mV, its resonance began to shift towards shorter wavelengths.

Fabrication of the Tuner

The IR MOS tuners were fabricated at the Cornell NanoScale Facility using a Cambridge/Leica EBMF 10.5 e-beam lithography system. The dipole-antenna-coupled microbolometer was fabricated on top of a 3-in. Si wafer with a resistivity of 8000 Ω cm ($N_A = 4 \times 10^{11}$ cm$^{-3}$). Both local and global alignment marks were then written using a bilayer of poly(methylmethacrylate) and methacrylic acid (PMMA-MAA) and poly(methylmethacrylate) (PMMA) in a liftoff process. The global marks were used to correct for any rotation errors while loading the substrates into the chuck, while the local marks were used to correct for any stage drift when moving from field to field. Gold was used for the dipole antenna arms, with niobium as the bolometer. We fabricated the MOS-C with 25 nm of sputtered SiO$_2$ on top of a p-type Si substrate, and used a dipole antenna with a full antenna length of 1.7 μm. The width of the antenna arms as fabricated was 385 nm. A scanning electron micrograph of one of the devices fabricated is shown in Fig. 3.

Tuning Measurements

We used a tunable CO$_2$ laser with emission from 9.28 to 10.78 μm in discrete lines. The laser was focused by an f/1 optical train. The laser polarization was linear and was rotated by means of a half-wave plate. The bolometer under test was placed at the focus of the beam. The position of the device was adjusted for the best response by using motorized stages with submicron accuracy. The beam was modulated with a chopper at a frequency of 2.5 kHz. The modulated signal was read with a lock-in amplifier after a 10X preamplification. For the device under test, the maximum signal V_{max} was obtained for the polarization parallel to the antenna axis, and the minimum signal V_{min} was obtained for the cross polarization. The polarization-dependent signal is defined as $\Delta V = V_{max} - V_{min}$. The polarization-dependent signal and the power on the detector were measured for each wavelength. The power fluctuation from the laser output for each wavelength was removed from the measured signal by normalization of the polarization signal (volts) to the measured power (watts) on the detector.

The bolometer under test was biased with both positive (depletion mode) and negative voltages (accumulation mode) and placed at the focus of the beam. The device was first measured with a bias of -100 mV. Then a positive bias was applied, which was adjusted in 50-mV increments up to 200 mV. The discrete-line results of each measurement were then fitted with a Gaussian profile using a least-squares fit in order to find the precise resonance of the dipole antenna at each bias voltage. These data for resonance wavelength as a function of bias voltage are seen in Fig. 2.
5 Conclusions
An antenna-coupled IR bolometer was demonstrated to have tunable wavelength response near 10 μm, with around 0.5 μm of tuning. The tuning mechanism is an MOS capacitor developed underneath the antenna structure in a Si substrate. A model was developed for the tuning behavior that agrees well with measured values. Trends in this model indicate that the tuning range is increased for thinner oxide layers and for lower doping concentrations. Our device was thus fabricated with an oxide layer of 25 nm and a substrate resistivity of 8000 Ω·cm.

Acknowledgments
This work was performed in part at the Cornell Nanofabrication facility (a member of the National Nanofabrication Users Network), which is supported by the National Science Foundation under grant No. ECS-9731293, Cornell University, and industrial affiliates. This material is based on research supported by NASA grant NAG5-10308.

References

Mohamed R. AbdelRahman received his BSc degree in physics from the American University in Cairo, Egypt in 1999 and his MSc and PhD degrees in electrical engineering from the University of Central Florida, Orlando, Florida, in 2002 and 2004 respectively. He served as a graduate research assistant in the Infrared Systems Laboratory at the College of Optics and Photonics (CREOL) from 2000 until 2004. His research interest is in the area of antenna-coupled detectors for millimeter-wave and infrared focal plane arrays. He is a member of SPIE.

Glenn D. Boreman is Trustee Chair Professor of Optics, Electrical Engineering, and Physics at the College of Optics and Photonics (CREOL) at the University of Central Florida. He received a BS from the Institute of Optics, University of Rochester, and a PhD from the Optical Sciences Center, University of Arizona. He has been a visiting scholar at Imperial College in London, the Swiss Federal Institute of Technology (ETH) in Zürich, and the Defense Research Agency (FOI) in Linköping, Sweden. Dr. Boreman currently serves as the Editor-in-Chief of OSA’s journal Applied Optics, and is a past member of the SPIE Board of Directors. He is coauthor of the graduate textbook Infrared Detectors and Systems, author of Modulation Transfer Function in Optical & Electro-Optical Systems, and Basic Electro-Optics for Electrical Engineers. He has published more than 100 articles in the areas of infrared detector and focal-plane analysis, optics of random media, infrared scene projection, and transfer-function techniques. Dr. Boreman is a Fellow of SPIE and OSA. He and two of his students received the 1995 Kingslake Medal from SPIE.

Biographies and photographs of other authors not available.