1. Introduction

1.1. Research aims

The investigation of archaeological landscapes has become an intrinsic part of interpreting long-term changes in settlement and land use, especially among early agricultural societies (e.g., Alcock, 1988; Barker, 2011). Agrarian landscapes implement constellations of built features to permit and sustain productive crop cultivation and animal husbandry. Terrace walls manage local geomorphology, especially on anthropogenic landscapes, by creating more stable topography for field plots, conserving slope water flow, retaining arable sediments and minimizing soil erosion (Treyce and Denevan, 1994; Rackham and Moody, 1996, 140–142). Further, varying configurations of terraced fields provide a diversified risk reduction strategy for farmers in localities marked by seasonally or annually irregular rainfall (Sandor and Eash, 1991). As such, terrace systems play crucial roles in permitting long-term agricultural production in regions that may be agriculturally marginal due to limited water supply or pronounced topographic relief.

In southwestern Asia, one of the world’s best-studied arid regions, the earliest terraced fields may date back five or more millennia (Spencer and Hale, 1961; Wilkinson, 2003, 135–136, 186–202). The southern Levant, marked by limited water availability and hilly topography, features extensive terracing and other evidence of arid land agriculture associated with Chalcolithic settlement in the fourth millennium B.C. (Levy and Alon, 1987), the advent of Bronze Age urbanism ca. 3000 B.C. (Finkelstein, 1988; Gibson et al., 1991), late Iron Age Israelite kingdoms in the first millennium B.C. (Hopkins, 1985) and long-term land use spanning the Neolithic through modern eras (Barker et al., 2007). Yet despite
their prominent role in traditional dry land agriculture and their potential importance for agricultural development in early complex societies, terraced field systems remain challenging targets for dating and interpretation.

On Cyprus, marked by arid climate and the hilly topography of its interior, terrace walls date back at least several centuries (Given and Knapp, 2003, 306) and potentially much earlier, in light of the evidence from environmentally similar neighboring regions. This study was triggered by extensive hillside terraced fields, carpeted with archaeological ceramics, which lie in close proximity to the Bronze Age settlement of Politiko-Troullia. A variety of surveys around the Mediterranean (e.g., Bintliff et al., 1999; Cherry et al., 1991) argue that prehistoric archaeological evidence tends to be obscured by more abundant remains from later periods. Thus, the pronounced abundance of Bronze Age pottery on thoroughly terraced neighboring slopes, and the resulting potential for insights on the ancient agrarian landscape, invite detailed geographical and archaeological investigation. We examine the spatial relationships between archaeological material, terraced fields and environmental variables as they elucidate this long-term agrarian landscape in the Troodos foothills (Creighton et al., 2007 and Newson et al., 2007 apply a similar approach in the Wadi Feynan, Jordan).

1.2. Bronze Age settlement at Politiko-Troullia

The remains of Politiko-Troullia lie buried in the foothills of the Troodos Mountains, south of the fertile Mesaoria Plain of central Cyprus (Fig. 1). Politiko-Troullia covers a saddle perched at 410 m above sea level (35° 1’ 14” N; 33° 14’ 50” E), bounded by deeply entrenched Kamaras Creek to the west and overlooking the streambed of the Pediaios River, the largest water course on Cyprus, to the east. Today, the Pediaios no longer flows below Tamassos Dam, 500 m to the southeast, but in antiquity the inhabitants of Politiko-Troullia would have enjoyed ready access to arable land, spring-fed stream flow just at the community’s western edge along Kamaras Creek, the resources along the Pediaios, and easily-mined copper sources less than one km to the south in the pillow lavas of the Troodos. In concert, these factors no doubt encouraged the establishment of the agrarian community at Politiko-Troullia.

Bronze Age settlement at Politiko-Troullia was inferred originally from evidence of gaming stones to the south of the Iron Age ruins of Tamassos (Buchholz, 1982, 70–71). Subsequent reconnaissance along the eastern most transect of the Sydney Cyprus Survey Project noted abundant Red Polished Ware ceramics and eroded exposures of three stone walls (probably those still visible at the site’s northwestern edge) that verified the settlement’s location and Bronze Age occupation (Given, 2002, 44–45; Given and Knapp, 2003, 126, Appendix A). More systematic reconnaissances of the locality between 2004 and 2011 has revealed a multi-faceted archaeological landscape defined by a distribution of material culture, especially ceramics, over approximately 20 ha covering the modern fields of Politiko-Troullia and the adjacent hill slopes of Politiko-Koloiokremmos (Falcoener et al., 2005, in press; Fall et al., 2008) (Fig. 2). Just north of Troullia, the hill of Politiko-Lampertis east of Ayios Irakleidios Monastery features the remains of subterranean rock-cut tombs, and their associated Bronze Age pottery (Frankel, 1974a, 1974b; Karageorghis, 1965; Masson, 1964), which may have provided a final resting place for the occupants of the village of Politiko-Troullia.
Initial field investigations in 2004 and 2005 focused on archaeological and soil resistivity survey of relatively flat fields covering approximately 2 ha (“Troullia East” and “Troullia West” in Fig. 2) that featured abundant surface material culture and thus suggested considerable sub-surface architecture (Falconer et al., 2005). Nine stone walls, in addition to the three reported by the Sydney Cyprus Survey, were exposed and mapped along the western edge of Troullia West. Test excavation immediately adjacent to one of these walls revealed at least 3 m of stratified archaeological sediments incorporating Bronze Age potsherds, chipped stone, animal bones and floras (Falconer et al., 2005; Fig. 4). Soil resistivity survey conducted over approximately 1 ha revealed a network of buried walls in southern Troullia West, at least one rectangular structure in northwestern Troullia West, a lengthy wall across the center of Troullia East and a multi-room structure at its northern end (Falconer et al., 2005; Fig. 3).

Our soil resistivity results guided the location and excavation of seven 4 × 4 m units (Areas A–G) in 2006 and 2007, which unearthed an architectural compound with roofed structures, storage bins, alleyways and out buildings (Fall et al., 2008, Figs. 12 and 13). These stone-built structures were founded on, or dug into, soft friable siltstone bedrock. Copper tongs, a carved limestone casting mold, ceramic crucible fragments, copper slag and chunks of ore suggest a covered, exterior metallurgical work area (Fall et al., 2008, Figs. 14 and 15). Simultaneous excavation of Area L, near a lengthy wall running northwest-southeast, revealed architecture founded on bedrock and accompanied by shallow deposits with wall fall, material culture and animal bones. Settlement in Troullia West, as revealed first by soil resistivity, then by four seasons of excavation between 2008 and 2011, features a large rectangular courtyard surrounded by apparent domestic structures to the west, north and east (Falconer et al., in press; Fig. 4). The central courtyard is bounded on the south by an alley sloping down from east to west toward the streambed of Kamaras Creek at the site’s western edge. This architecture was rebuilt in at least four phases, as manifested most clearly by successive wall realignments and door blockage along the northern side of the Troullia West alley (Falconer et al., in press; Fig. 7). The ceramic assemblage from Politiko-Troullia places its occupation in the Middle Cypriot portion of the Prehistoric Bronze Age, based on abundant Red Polished Ware, especially Red Polished III, accompanied by more limited amounts of White Painted Ware (see discussions in Falconer et al., 2005, in press; Fall et al., 2008).

The bone evidence from Politiko-Troullia indicates animal husbandry emphasizing domesticated agrarian species, especially sheep (Ovis aries) and goat (Capra hircus) (Falconer et al., in press;
Fall et al., 2008; Table 1). Animal exploitation included hunting of forest species, like wild goat (Capra aegagrus) and especially Mesopotamian fallow deer (Dama dama mesopotamica), while management of farm animals included pig (Sus scrofa), cattle (Bos taurus) and equids (perhaps as traction animals). Systematic water flotation of almost 500 L of sediment from a variety of contexts at Politiko-Troullia produced botanical remains that feature substantial accumulations of wood charcoal. The major plant taxa in the Politiko-Troullia assemblage include olive (Olea europea), grape (Vitus vinifera), fig (Ficus carica), pistacio (Pistacia sp.), cereals, and several wild taxa (e.g., Asteraceae, Galium and wild legumes). Clear evidence of multiple orchard species, especially carbonized olive seeds, suggests an emphasis on arboriculture at Troullia. Interestingly, cereal grains are very infrequent and pulses are absent altogether from the Troullia plant assemblage, reinforcing the probable importance of meat, including venison, as a crucial protein source in the local diet. Analysis of seed:charcoal ratios in comparison to data from four Near Eastern Bronze Age towns and villages strongly suggests persistent woodlands and woodland resources (e.g., deer) in the Troullia hinterland, in contrast to the more deforested contemporaneous landscapes of the mainland (Klinge and Fall, 2010).

1.3. The land behind Troullia

Detailed mapping of the Politiko-Troullia locality reveals extensive distributions of archaeological material culture and agricultural features in Troullia’s immediate hinterland, especially

Fig. 3. Photo of Politiko-Koliokremmos showing north-facing terraced hillslope. Photo from northeast corner of Troullia with ravine in foreground (photo by Rachel Benkowski).

Fig. 4. Map showing location of 2 m radius survey collection circles (S1–85, S101–189), terrace walls (T), excavation units on Politiko-Troullia (PT), also indicating dirt roads and erosional ravines.
Table 1. Archaeological chronology, mean sherd densities, and ubiquity (% of samples in which sherd or tiles are present) for prehistoric and historic periods represented at Politiko-Troullia (village) and Koloiokremmos (terraced fields); n = number of survey collection circles.

<table>
<thead>
<tr>
<th>Cultural Period</th>
<th>Sherd Density (#/100 m²)</th>
<th>Total</th>
<th>Troullia</th>
<th>Koloiokremmos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 174</td>
<td>4.39</td>
<td>2.80</td>
<td>6.14</td>
</tr>
<tr>
<td></td>
<td>n = 91</td>
<td>13.82</td>
<td>0.44</td>
<td>28.49</td>
</tr>
<tr>
<td></td>
<td>n = 83</td>
<td>21.78</td>
<td>16.10</td>
<td>28.01</td>
</tr>
<tr>
<td>Roman-Medieval</td>
<td>(100 BC – AD 1571)</td>
<td>4.35</td>
<td>8.14</td>
<td>0.19</td>
</tr>
<tr>
<td>(Roof Tiles)</td>
<td>(1000 – 100 BC)</td>
<td>41.36</td>
<td>51.53</td>
<td>30.22</td>
</tr>
<tr>
<td>Iron Age-Hellenistic</td>
<td></td>
<td>111.14</td>
<td>90.64</td>
<td>133.62</td>
</tr>
<tr>
<td>Protohistoric Bronze Age (1700 – 1000 BC)</td>
<td></td>
<td>11.36 (21%)</td>
<td>0.44 (15%)</td>
<td>28.49 (42%)</td>
</tr>
<tr>
<td>Prehistoric Bronze Age (1000 BC – 2500 BC)</td>
<td></td>
<td>21.78 (66%)</td>
<td>16.10 (54%)</td>
<td>28.01 (78%)</td>
</tr>
<tr>
<td>All Time Periods</td>
<td>(2500 BC – AD 1571)</td>
<td>4.35 (22%)</td>
<td>8.14 (37%)</td>
<td>0.19 (2%)</td>
</tr>
</tbody>
</table>

Chronology adapted from Given and Knapp (2003); Table 3.1. Roof tiles not included in the sherd density calculations.

on adjacent Politiko-Koloiokremmos (see Fig. 2). Here we explore spatial patterns of material culture, topography and vegetation, as they reveal changing patterns of land use in association with stone-built terrace walls on the western, northern and eastern slopes of Koloiokremmos (Fig. 3). These walls are particularly abundant on the northwestern slope overlooking Troullia West, and the northern and northeastern slopes that drain to the Pedaios River. Politiko-Troullia and the terraces on Koloiokremmos have been plowed in the past and seeded with oats for hay. However, these field plots are not managed today. The nearby Ayios Irakleidios Monastery has no records of terrace farming or land ownership in the recent past, raising the distinct possibility that these terraces reflect multiple eras of pre-modern landscape management. Previous investigations of other Cypriot field systems (e.g., Deckers, 2003; Noller and Wells, 2003; Wagstaff, 1992) describe post-Bronze Age terraces. A survey around Sotira-Kaminoudhia, for example, found numerous local terraces associated with abundant Hellenistic and later ceramics (Held, 2003), accompanied by a notable absence of Middle or Late Bronze Age pottery. In contrast, the terrace walls of Koloiokremmos lie amid a carpet of potsherds and roof tiles, which holds the potential to illuminate the land behind Troullia in the deep past.

Terrace walls are utilized throughout the Mediterranean to help redistribute sediment, increase root penetration of trees and vines, especially olives and grapes, to expand the land available for cultivation and to control erosion (Rackham and Moody, 1996). In antiquity, terraces may have been used to expand the cultivation of cereals, as well as for olive orchards and grape vines. Paleoenthnobotanical data from excavations at Troullia contain relatively abundant olive pits and grape seeds suggesting that the landscape around this ancient settlement may have been used for aboriculture in addition to grain agriculture.

The importance of orchard product industry in the urbanization of Cyprus is demonstrated amply by a massive olive oil manufacturing center at Kalavasos-Ayios Dhimitrios, where a large Protohistoric Bronze Age central courtyard–style complex, with scores of pithos storejars, produced and stored up to 50,000 L of olive oil (South, 1992). Large-scale oil production in the Protohistoric Bronze Age is attested further by pressing floors found at Maroni-Vounres (Cadogen, 1984, 1986), Episkopi-Bamboula (Weinberg, 1983), Enkomi (Courtois et al., 1986) and Hala Sultan Teke (Astrom, 1985). However, as Hadjisavvas (1992, 2003) and Warnock (2007) document thoroughly, oil production often operates on a smaller, household scale involving the simple crushing of olives with a mortar and pestle or in a shallow rectangular ground stone trough. Accordingly, Hadjisavvas (1992) notes that the most common archaeological evidence for oil production comes in the form of fragmentary crushing troughs, which are found in household contexts at the settlements above, and at Mrytou-Pig-hades (Taylor, 1957), Kitton (Karageorghis, 1987) and Alassa-Pono Mandilaris (Hadjisavvas, 1988, 1989). The ground stone assemblage at Politiko-Troullia features large on-site and off-site mortars, as well as 16 shallow trough fragments arrayed primarily among the settlement’s houses and the Troullia West alleyway. The combination of ground stone troughs, olive remains and local terracing forms a circumstantial case for aboriculture, including household-scale olive oil production, at Politiko-Troullia.

2. Methods

2.1. Archaeological survey

The first investigations of Politiko-Troullia included a systematic survey of surface material culture over Troullia West and East. This sampling identified concentrations of particularly dense material culture, and this patterning (in conjunction with our soil resistivity results) helped guide the location of the excavation areas noted above. Our sampling grid included 61 2-m circles on Troullia West and 30 2-m circles on Troullia East (Fig. 4). As a means of exploring the material culture associated with local terrace walls and integrating our assessment of village life at Politiko-Troullia with land use on its surrounding hillsides, we expanded this sampling procedure to include 83 2-m circles on the slopes of Koloiokremmos. While approximating the 20-m sampling interval on the flat fields of Troullia East, the irregular topography of Koloiokremmos required more purposeful placement of sample circles at locations that were unimpeded by particularly steep terrain or dense foliage. The locations of all 174 circles, as well as their surrounding topography and cultural features, were established digitally using a total station laser theodolite. Topography, sample circles, terrace walls, excavation areas, roads and erosional ravines were brought together as ArcGIS shapefiles for coordinated mapping.

Within each sampling circle all material culture, consisting overwhelmingly of pottery sherds and ceramic roof tiles, was collected for analysis. The sherds were identified according to the conventional ceramic “wares” of Cypriot prehistory when possible (especially for the Bronze Age sherds) and typed chronologically in four major time periods with distinct ceramics and roughly comparable lengths running from the Prehistoric Bronze Age through the Roman-Medieval era (Table 1). Roof tile fragments, which probably date to the Roman-Medieval era but may stretch over a longer span (e.g., Wright, 1992, 383–384) were identified and counted separately. No material culture emerged for periods prior to the Bronze Age or for the Ottoman Period, and modern remains were limited largely to shotgun shell casings. Surveyed material culture data were imported into ArcGIS shapefiles that included each sample’s geographic coordinates, elevation, total sherd count, roof tile count and sherd counts categorized by period. Initial descriptive statistics include period-by-period mean sherd and tile densities, and ubiquity for samples collected from the village site of Politiko-Troullia and the hill slopes of Politiko-Koloiokremmos.

Sherd and roof tile counts for all 174 circles were transformed into continuous surfaces to facilitate analysis of spatial patterns over Troullia and Koloiokremmos. Archaeological spatial analyses increasingly employ a plethora of surface data to model landscape relationships (e.g., Bevan and Conolly, 2009). Our study utilizes an inverse distance weighting interpolation algorithm (e.g., Conolly and Lake, 2006, 94–97) to predict values for locations between

Author's personal copy
points with known data, thereby creating continuous surfaces of sherds or roof tile densities. In this procedure, known sample values are used to calculate unobserved values across intervening space using the principle of spatial autocorrelation, which posits that any value in space approximates nearby points more closely than more distant points (Tobler, 1970). Inverse distance weighting implements this principle by applying an increasing, penalized weight to known points as a function of their distance from an unknown point, thereby weighting interpolated values in favor of the nearest known points.

Interpolated surfaces were created at two resolutions, based on 12×12 m and 4×4 m pixel sizes, each utilizing a distance weighting parameter of 2 to give more weight to nearby neighbors. Interpolated values were based on known values from the four nearest sample points and in all cases these calculations exclude data from beyond 45 m. This fairly conservative approach to inverse distance weighting minimizes spurious interpolations, especially around the edges of our study area. Six maps were created at both resolutions to display continuous surfaces of densities for total sherds, Prehistoric Bronze Age sherds, Roman-Medieval sherds, and terrace wall widths, top elevation, bottom elevation and orientation as well as a number of walls, often relatively short, fragmentary construction and environmental data. Wall types 1 and 2 are distinguished from the other types by their use of rounded limestone and igneous cobbles, chinked with stones and material culture. Type 2 walls lack sediment infilling, and include some examples of stone and roof tile fragment chinking. Type 1 walls feature heavy lichen cover on both surface and on underlying stone fragments. Cobbles with moderate amount of lichen cover.

<table>
<thead>
<tr>
<th>Type</th>
<th>Stone Work</th>
<th>Chinking</th>
<th>Sediment Infilling</th>
<th>Lichen Cover</th>
<th>Associated Archaeology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unfitted</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>PreBA sherds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ground stone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unfitted</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Roof tile fragments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unfitted</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fitted</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fitted</td>
<td>Yes</td>
<td>No</td>
<td>Little to none</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Modern</td>
</tr>
</tbody>
</table>

Description: Terrace walls made from small rounded limestone and igneous cobbles, with small stone chinking and lichen-covered infilled sediment. Cobbles heavily covered with lichen. Red Polished Ware pottery sherds in terrace walls or in under-laying sediment. Some terraces include igneous ground stone artifacts and chert nodules.

2.2. Agricultural terraces

Our study integrates these spatial patterns with detailed mapping of 102 terrace walls on Politiko-Koloiokremmos. Because these walls varied in their state of preservation, the locations of wall faces and ends were plotted from well-preserved stone alignments in the field. Subsequent processing of digital map data using ArcGIS permitted judicious merging of partial or eroded wall segments based on shared alignments and base elevations. Each terrace wall was photographed (and evidence of erosion noted and sketched) to document its present condition and relationship to other terraces. Individual terraces were rendered as closed polygons using point coding in CAD, thereby providing measures of terrace wall width, top elevation, bottom elevation and orientation relative to natural contours.

These terrace walls share a number of general characteristics, but display several noteworthy systematic differences. All walls incorporate dry-stone, unmortared, and single-row construction. A layer of rubble behind many walls suggests the use of riser fill to separate the wall from upslope soil (see Frederick and Krahthopoloulou, 2000). Only three walls on Koloiokremmos show obvious signs of reinforcement or reconstruction. Secondary stone alignments are embedded behind walls T 161 and 168, while T 176 makes use of bedrock outcrops for structural support at its ends. A descriptive assessment of all 102 terraces on Koloiokremmos, as well as 66 additional terraces on nearby hills farther afield on Cyprus, leads to a six-part qualitative typology based on terrace wall construction and associated evidence (Table 2). Wall Type 6 denotes unwalled terraces created by modern bulldozing, which often are planted with cereals, or active or abandoned orchards, including olive, almond and pine trees. Types 4 and 5 are built with fitted, stone-chinked limestone construction that lacks incorporated material culture. Wall types 1 and 2 are distinguished from the other types by their use of rounded limestone and igneous cobbles, chinked with stones and material culture. Type 2 walls lack sediment infilling, and include some examples of stone and roof tile fragment chinking. Type 1 walls feature heavy lichen cover on both constituent stones and infilled sediment, frequently associated with Red Polished sherds (Fig. 5). These walls may be founded on bedrock or on sediments containing Red Polished Ware. The terraces on Koloiokremmos include examples of wall types 1 and 2, as well as a number of walls, often relatively short, fragmentary examples, that could not be categorized distinctly (Fig. 6).

In Fig. 5. Photo of type 1 terrace wall on northwest slope of Koloiokremmos overlooking Troullia excavation areas K, M–Z (photo by Rachel Benkowski).
2.3. Remote sensing

Elevation data from the ASTER satellite, at 30 m resolution, provided the basis for a digital elevation model. In association with this DEM, material culture distributions and terrace maps were coordinated with remotely sensed images from the Quickbird and Ikonos satellites, which have been used in other studies of terraces in the Mediterranean (e.g. Bevan and Conolly, 2011) and provide land cover data on vegetation, soil and sediment distribution, and erosional features. Data from Quickbird were acquired at 2.4 m resolution in October 2003, while Ikonos provided 3.2 m resolution data from April 2010, thereby capturing fall and spring biophysical attributes, respectively. We quantified vegetation by using the Soil-Adjusted Vegetation Index (SAVI; Huete, 1988), a modified version of the Normalized Difference Vegetation Index (NDVI) that dampens the influence of differential reflectance of red and near-infrared spectra when vegetation cover is sparse, as in our study area on Cyprus. Both the SAVI and NDVI provide indices of photosynthetic activity, based on the greater reflectance of near-infrared light and absorption of visual red light by “green” vegetation, which returns to typical reflection/absorption balance by dead or stressed vegetation.

As a means of exploring the relationships of terrace configurations with environmental and archaeological data, we conducted a sequence of linear and logistical regression analyses. In the field we surmised that variation in terrace wall characteristics, including wall type, might provide a window on differing wall functions and temporal patterns of land use. For example, we observed that longer terrace walls appeared to function as retaining walls for arable field plots on gentler, slightly lower elevation slopes, whereas shorter walls retained little sediment and appeared to function as erosion control features on steeper upper slopes. To test this exploratory hypothesis we employed linear regression (using SPSS version 19) to consider the associations of terrace wall length with elevation, slope, and SAVI derived from both Quickbird and Ikonos data. Mean elevation was derived by averaging the elevation values along each terrace wall. Mean slope was calculated from interpolated values within a 4 m buffer around each terrace wall. Mean SAVI values were calculated for both satellite images by averaging the SAVI values within 4 m and 12 m buffers around each terrace wall. Soil-adjusted vegetation values provide direct measures of the living vegetation associated with each terrace, and therefore the ability of these walls to retain sediment and moisture. Subsequently, logistical regression was used to assess the environmental and archaeological variables that distinguish Type 1 from Type 2 terrace walls, again allowing us to explore variation in terrace form and function. Our logistical regressions consider only walls clearly defined as Type 1 or 2, and exclude walls shorter than 2 m in length. (Short length and fragmentary preservation characterize many unclassified walls.) This assessment builds on the results of our linear regressions and considers, from a slightly different analytical perspective, the possibility that different terrace wall types may be associated with temporal changes in land use. In particular, we wanted to assess the possibility that Type 1 walls relate more closely to Prehistoric Bronze Age land use (e.g., given their proximity to the south end of Politiko-Troullia), whereas Type 2 walls may relate to agrarian behavior in other time periods.

3. Results

3.1. Archaeological survey

Intensive survey of Politiko-Troullia and Koloiokremmos reveals a discontinuous pattern of ceramic deposition across the Bronze Age settlement and its adjacent fields (data presented in Appendix A). Appreciable quantities of potsherds may be distributed across...
agricultural landscapes through a variety of mechanisms, including "manuring" of fields (Alcock et al., 1994: 148–153; Astill and Davies, 1997: 28–32; Ault, 1999; Bakels, 1997; Gerrard, 1997: 69–70; Wilkinson, 1989), plowing of fertilized fields (Ammerman, 1985; Bintliff and Snodgrass, 1988; Yorson et al., 1990) and down slope erosion from dense sherd concentrations (Alcock et al., 1994, 164). All of these behaviors provide direct or indirect indications of human land use, in this case most likely related to agriculture. When compared to the survey evidence from Troullia, the higher mean total sherd density for Koloiokremmos and the similar ubiquity of sherds on its slopes (see Table 1) accentuate the probability of ancient utilization of its fields and terraces. High densities are particularly apparent on the lower slopes of Koloiokremmos and along either side of the ravine that drains off its northern slope down to the Pediaios riverbed (Fig. 7). Sherd distributions on Troullia’s margins also show high densities on the slopes immediately overlooking the settlement’s southern end. The relatively high sherd densities on Koloiokremmos do not appear to indicate a domestic settlement there. First indications of appreciable sherd densities on the eastern most portions of Koloiokremmos inspired a 20 m × 40 m soil resistivity transect plus three subsequent 1 m × 1 m test excavations in 2005, none of which revealed evidence of sub-surface architecture (see “Troullia East of East” shown on Fall et al., 2008: Fig. 4).

On the fields that cover the settlement at Politiko-Troullia, high sherd densities coincide with five areas of buried architecture revealed by soil resistivity: 1) the south end of Troullia West, where a matrix of buried walls has been excavated in Areas K and M–Z between 2008 and 2011 (Falconer et al., in press); 2) the south end of Troullia East along a lengthy buried wall alignment originally identified in 2004 (Falconer et al., 2005, 74, Fig. 3); 3) the north-western portion of Troullia West in which rectangular wall patterns are clearly visible (Falconer et al., 2005, 74, Fig. 3); 4) the northern end of Troullia East, where a rectilinear compound was identified.
through our original soil resistivity (Falconer et al., 2005, 74, Fig. 3), verified by follow-up resistivity (Fall et al., 2008, 188, Fig. 5) and excavated in Areas A–G in 2007 (Fall et al., 2008); and 5) the middle of Troullia East, which was sampled in excavation Area L in 2007 (Fall et al., 2008).

The mean densities for Prehistoric Bronze Age pottery on both Troullia and Koloioikremmos are greater than for any other period considered in this study. The heaviest pottery density patterns (consisting primarily of Red Polished Ware) on Politiko-Troullia coincide once again with the foci of buried architecture enumerated above. Unlike the mean densities for total sherd, Prehistoric Bronze Age sherds are more abundant and ubiquitous on the village of Politiko-Troullia than on Koloioikremmos. A prominent “hotspot” on Troullia East surrounds excavation Area L and extends to Areas A–G, where high sherd densities reflect not only Bronze Age architectural remains, but also heavy plowing and possible sediment deflation. As with total sherd density, the northern portion of Troullia West and the vicinity of excavation Areas K and M–Z are marked by sherd concentrations. Away from the settlement, Prehistoric Bronze Age pottery is concentrated on slopes immediately overlooking the southern end of Politiko-Troullia, along the ravine banks below the site’s eastern margin, and on the lower slopes of Koloioikremmos. In general, Prehistoric Bronze Age pottery deposition on the fields of Koloioikremmos is associated commonly with the margins of Politiko-Troullia East.

Protohistoric Bronze Age pottery also shows higher counts on Troullia than on Koloioikremmos, where it was recovered in only two sample circles. Despite its 37% ubiquity on Troullia, Protohistoric Bronze Age sherds are notable only in small quantities from the northern end of Troullia West, and are virtually absent from its nearby hill slopes. Although the Protohistoric Bronze Age ashur in urbanized settlements and economies on Cyprus, this interval is marked by a hiatus in archaeological deposition at and around Politiko-Troullia.

The majority of sherds from the Iron Age through the Hellenistic Era pertain to the Geometric and Archaic periods of the Iron Age. On Politiko-Troullia, this evidence is notable near the high point of Troullia East, where the 2004 survey produced a ceramic Iron Age helmeted figure (Falconer et al., 2005, Fig. 10). However, the excavation of nearby Area L in 2007 produced no stratified evidence of post-Bronze Age deposition or occupation. The spatial patterning of Iron Age-Hellenistic pottery also is noteworthy for its discontinuous hotspots on the slopes of Koloioikremmos. Unlike Bronze Age patterns, the mean Iron Age-Hellenistic sherd density and its ubiquity are greater on Politiko-Koloioikremmos than on Troullia. While the abundance of sherds on Koloioikremmos’ terraced fields approaches that for the Prehistoric Bronze Age, Iron Age-Hellenistic pottery is less than one-third as dense on Politiko-Troullia, it is only about one-half as dense overall, and is not associated with any excavated evidence. However, sherds are more ubiquitous on Koloioikremmos for this time range than for any other period.

Pottery from the Roman through Medieval periods (consisting primarily of Roman sherds) is distributed less densely and less ubiquitously than for the preceding Iron Age-Hellenistic Period. Although found in 26% of sample circles overall, only one circle (547) produced more than five sherds, creating a plot that suggests a single location of concentrated Roman ceramic deposition. As seen in the Iron Age-Hellenistic evidence, pottery density and ubiquity are greater on Koloioikremmos than on Troullia. Interest-ingly, although a buried medieval pipeline crossed Politiko-Troullia West (Falconer et al., in press), mean total sherd concentration for the Roman-Medieval timespan is nearly as low as that of the Protohistoric Bronze Age.

Ceramic roof tile fragments were recovered from only one collection circle on Politiko-Troullia (on its eastern edge). Nonetheless, the mean tile concentration on Koloioikremmos is comparable to those for Prehistoric Bronze Age and Iron Age-Hellenistic sherds, but in an extremely concentrated and confined spatial pattern, as reflected by the lower overall ubiquity of tile fragments. Roof tile remains describe a striking downward slope flow from the top of Koloioikremmos into the upper portions of the ravine that drains the hill’s northern slopes.

3.2. Terrace types and environmental analyses

Our linear regressions began with simple exploratory scatterplots that related terrace wall length to elevation, slope, SAVI based on Ikonos 4 m and 12 m resolution, and SAVI based on Quickbird 4 m and 12 m resolution (Fig. 8). Initial scatterplots and regressions showed that the 4 m data for both satellites were slightly preferable, and that terrace wall length did not vary systematically with elevation. Our linear regression analyses continued by investigating the relationship between the dependent variable of terrace wall length and three independent variables: slope, Quickbird 4 m SAVI and Ikonos 4 m SAVI. This analysis produces a model that minimizes the squared error between the modeled regressions for the independent variables and the observed values of the dependent variable. We evaluated the regression model using backward selection of variables, a procedure that permits step-wise elimination of variables based on their lack of statistical significance (i.e., P values >0.05). Step 1 involves a multiple linear regression of terrace wall length on slope, Quickbird SAVI and Ikonos SAVI, in which only Ikonos SAVI produces a statistically significant result (Table 3). Elimination of the independent variable with the highest P value in step 1 (Quickbird SAVI) leads to Step 2, a regression of wall length on slope and Ikonos SAVI, in which Ikonos SAVI again emerges as a significant variable. Elimination of slope in Step 2 then produces a final regression that highlights the consistently significant relationship (note also the decreasing standard error with each step) in which higher SAVI values, indicative of greater spring vegetation, correlate with longer terrace walls. A scatterplot and linear regression of the lengths of Type 1 and 2 walls (>2 m) on Ikonos SAVI reiterates the correlation of longer terrace walls with greater spring vegetation (Fig. 9). Interestingly, Type 2 terrace walls (median length = 29.5 m) commonly are longer than Type 1 walls (median length = 4.00 m). Jointly, these results raise the likelihood that longer terrace walls (including most Type 2 walls) more often served to retain plant-bearing arable field plots, whereas less vegetated shorter terrace walls (usually Type 1) may have served primarily to control erosion.

Terrace wall configuration and land use may be considered further through logistic regression, which provides a means for assessing the independent environmental and archaeological variables that are most informative for predicting Type 2 terrace walls from Type 1 walls. Logistic regression, in contrast to linear regression, considers a dichotomous dependent variable (Hosmer and Lemeshow, 2000). In this case the dichotomous dependent variable is terrace wall type (Type 2 vs. Type 1). We used a maximum likelihood estimator to calculate regression coefficients for independent spatial and vegetation parameters, and period-by-period sherd and tile densities. These coefficients are incorporated in an odds ratio equation to calculate the likelihood of distinguishing a Type 2 terrace wall from a Type 1 wall on the basis of the independent variables. In a manner similar to the linear regression analysis above, we used backward elimination as a step-wise means to discard statistically insignificant independent variables. Previous studies (e.g., Flack and Chang, 1987; Freedman, 1983) suggest that too many variables may obscure meaningful analytic results. Therefore, we segregated our analysis into three parts, each with different combinations of independent variables.
Part 1 considered the independent environmental variables of slope, Quickbird 4 m SAVI, Ikonos 4 m SAVI and terrace wall length. In this part, Step 1 eliminated Ikonos SAVI and Step 2 eliminated slope, leaving a significant negative regression based on Quickbird SAVI (Table 4). As with our linear regressions involving wall length, the significant independent variable (in this case Quickbird SAVI) provides P values < 0.05 through all three steps. This Part 1 logistical regression shows that, among environmental variables, Type 2 terrace walls (vs. Type 1 walls) can be predicted from lower mean Quickbird SAVI values. Conversely, higher Quickbird SAVI values are indicative of Type 1 walls and greater active fall vegetation, which consists primarily of trees (rather than shallow-rooted grasses that are dormant in the autumn months, see Fig. 8).

Our Part 2 logistical regression analysis considered independent variables that permit prediction of Type 2 vs. Type 1 terrace walls. These variables include mean sherd densities (based on interpolated values in a 4 m buffer around each terrace wall) for the Prehistoric Bronze Age, Protohistoric Bronze Age, Iron Age-Hellenistic Period and Roman-Medieval Era. In this part, Step 1 eliminated Protohistoric Bronze Age sherd density, Step 2 eliminated Iron Age-Hellenistic density, and Step 3 eliminated Roman-Medieval density, leaving Prehistoric Bronze Age sherd density as the sole significant archaeological variable for predicting Type 2 from Type 1 terrace walls (as shown in the last two steps in Table 5). In this instance, a negative regression reveals that lower

Table 3

<table>
<thead>
<tr>
<th>Step</th>
<th>Ind. Variable</th>
<th>B</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QB SAVI</td>
<td>-0.463</td>
<td>0.315</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.232</td>
<td>0.127</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>IK SAVI</td>
<td>0.661</td>
<td>0.162</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>2</td>
<td>Slope</td>
<td>0.147</td>
<td>0.113</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>IK SAVI</td>
<td>0.470</td>
<td>0.098</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>3</td>
<td>IK SAVI</td>
<td>0.564</td>
<td>0.066</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

P values < 0.05 in bold.

Fig. 8. Quickbird false color composite image (October 2003) of vegetation on Politiko-Troullia and surrounding landscape showing survey collection circles, terrace walls, and excavation units. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Linear regression of terrace wall length on SAVI (soil-adjusted vegetation index) values, with Type 1 (median length = 4.00 m) and Type 2 (median length = 29.50 m) terrace walls indicated. Regression: $y = 0.716x$, $R^2 = 0.495$, $P < 0.0001$.
Prehistoric Bronze Age sherd densities are indicative of Type 2 walls, and conversely that greater Prehistoric densities tend to indicate Type 1 walls.

Part 3 of our logistical regression analysis considers the significant variables identified by Parts 1 and 2: Quickbird 4 m SAVI and Prehistoric Bronze Age sherd density. This analysis eliminates Quickbird SAVI in Step 1, leaving Prehistoric Bronze Age sherd density as the most important independent variable, among all the environmental and archaeological variables considered in this study, for distinguishing Type 2 from Type 1 terrace walls (Table 6). Once again, lower sherd densities indicate Type 2 walls and, conversely, higher Prehistoric sherd densities indicate Type 1 walls.

4. Discussion

A variety of studies on Cyprus and elsewhere in the eastern Mediterranean (e.g., Cherry et al., 1991, 460–461; Cherry and Davis, 2001; Keswani, 1996; Knapp, 1997) propose Bronze Age settlement hierarchies with diversified coastal centers linked to inland towns that controlled rural villages and sanctuaries. The relatively scant Prehistoric Bronze Age ceramics and dispersed site locations reported by the Sydney Cyprus Survey (Given and Knapp, 2003, plate XLVII) suggest that the villagers of Politiko-Troullia inhabited a very sparsely populated countryside, in stark contrast to the later political and religious prominence of nearby Tamassos. In light of the rough mean of 20 sherd/100 m² suggested as agricultural background (Given and Knapp, 2003, 121), the densities of 30–50 sherd/100 m² on Koloiokremmos and Troullia reveal an intensely utilized, but apparently isolated, agrarian locality. Linear and logistic regressions build an indirect case for local land use in which shorter Type 1 terrace walls are distinguished best by nearby or logistic regressions build an indirect case for local land use in which shorter Type 1 terrace walls are distinguished best by nearby or

Table 4

Part 1 stepwise logistical regression distinguishing Type 2 from Type 1 terrace walls based on 4 × 4 m Ikonos SAVI, slope, and 4 × 4 m Quickbird SAVI.

<table>
<thead>
<tr>
<th>Step</th>
<th>Ind. Variable</th>
<th>B</th>
<th>SE</th>
<th>P</th>
<th>Exp (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IK SAVI</td>
<td>0.044</td>
<td>0.033</td>
<td>0.179</td>
<td>1.045</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.040</td>
<td>0.027</td>
<td>0.133</td>
<td>1.041</td>
</tr>
<tr>
<td></td>
<td>QB SAVI</td>
<td>-0.192</td>
<td>0.092</td>
<td>0.038</td>
<td>0.826</td>
</tr>
<tr>
<td>2</td>
<td>Slope</td>
<td>0.028</td>
<td>0.023</td>
<td>0.228</td>
<td>1.029</td>
</tr>
<tr>
<td></td>
<td>QB SAVI</td>
<td>-0.096</td>
<td>0.045</td>
<td>0.032</td>
<td>0.908</td>
</tr>
<tr>
<td>3</td>
<td>QB SAVI</td>
<td>-0.051</td>
<td>0.021</td>
<td>0.014</td>
<td>0.951</td>
</tr>
</tbody>
</table>

P values < 0.05 in bold.

of the medieval monastery of Ayios Mnason, west of Tamassos and, to a lesser extent, elsewhere along the transects of the Sydney Cyprus Survey (Given and Knapp, 2003, plate XLVII). Among habitation sites, the Protohistoric Bronze Age villages of Arehioiou-Vouuppes (Given and Knapp, 2003, 179) and Analiondas-Paltoklichtia (Webb and Frankel, 1994) lie several kilometers to the west and east, respectively. On the larger international stage of this era, the Amarna Letters mention a king of Alashiya, perhaps in reference to Cyprus or more likely its largest center at Enkomi (Malbran-Labat, 1999). In the midst of this local and island-wide political coalescence, our sherd densities, which are diminished by an order of magnitude or more, suggest that Politiko-Troullia stood abandoned, its adjacent fields apparently unused.

In contrast to modest and dispersed Bronze Age signatures, the Sydney Cyprus Survey reports abundant Iron Age and Classical Period remains, culminating in particularly high sherd densities along its eastern most transect, which runs nearest Politiko-Troullia (Given and Knapp, 2003, plates XXVI and XLVIII). This patterning around the city, sanctuary and tombs of ancient Tamassos (Politiko-Chomazoudia) reflects the ascent of this community as one of ten island city-states by the seventh century B.C. (Buchholz and Untiedt, 1996). Our mean sherd densities approximating 20 sherd/100 m² and higher in the fields of Koloiokremmos than on Troullia are consistent with manuring patterns. Alternatively, the low but discernible sherd peaks may indicate dispersed field structures or farmsteads, as found contemporaneously in southern Greece (Alcock, 1993: 48). During this era, particularly the Geometric and Archaic components of the Iron Age that provide the bulk of our evidence for this era, the fields of Koloiokremmos and Troullia constitute the part of the local agricultural hinterland for this emerging polity.

Roman through Medieval remains on and around Troullia and Koloiokremmos reflect widespread and long-lived field systems beginning in the Late Roman Period, but historically more clearly associated with Medieval agrarian estates at Psimoloufou several kilometers to the north and around the nearby monasteries of Ayios Irakleidios and Ayios Mnason (Given, 2000). Sherd distributions, especially in the lower elevation coverage of the Sydney Cyprus Survey (Given and Knapp, 2003, plates XXVII, XXVIII, XLIX and L) are consistent with the development of peasant villages and manuring patterns on the broad lands below the ruins of abandoned Tamassos. The evidence from the higher elevation locale of Troullia and Koloiokremmos now suggests very limited use, possibly involving only an isolated hilltop structure, as the most peripheral element in a landscape reoriented for extensive cultivation in a broadly spread manorial system.

5. Conclusions

Archaeological evidence, agricultural terraces and environmental parameters illuminate prehistoric and early historic agrarian landscapes in a locality marked by four millennia of settlement and agriculture on central Cyprus. Analysis of interpolated sherd distributions, modes of terrace wall construction, and remotely sensed data portray four eras of distinct agricultural land...
use. Results suggest intensive utilization of terraced hill slopes adjacent to the Prehistoric Bronze Age settlement of Politiko-Troullia, and in association with the nearby Iron Age city of Tamassos. In contrast, a striking dearth of evidence suggests local abandonment during the initial urbanization of Cyprus in the Protohistoric Bronze Age. Land use during the Roman through Medieval periods leaves a restricted signature, most likely relating to an isolated structure on Koloiokremmos, as a peripheral element of monasteries and agrarian estates to the north. Coordinated geographical and archaeological analyses permit inference of shifting agricultural landscapes during the oscillations of Cypriot agrarian economy and society.

Acknowledgments

This research was funded by a National Science Foundation grant awarded to Falconer and Fall. We thank Pavlos Flourentzos and Maria Hadjicosti, former and current Directors of the Department of Antiquities of Cyprus for permission to conduct this research, and Thomas Davis, former Director of the Cyprus American Archaeological Research Institute for logistical help. Two anonymous reviewers provided valuable comments, which we used to improve this study.

Appendix. Supplementary material

Supplementary material related to this article can be found at doi:10.1016/j.jas.2012.02.010.

References

